Salado Flow and Transport Calculations for the CRA PA

DOE/EPA Meeting on Changes from the CCA to the CRA

April 20-21, 2004

Joshua S. Stein Ph. D. Sandia National Laboratories

Outline

- Salado flow and transport process models
- CCA BRAGFLO grid
- Main drivers for changes
- Salado Flow Peer Review
- CRA BRAGFLO grid changes
- Effects on repository performance

Major PA Codes in the CRA

Flow and Transport in the Salado

- The multi-phase flow code, BRAGFLO is used to simulate 10,000 years of brine and gas flow.
- The transport code, NUTS is used to simulate the transport of radionuclides within the Salado.
- Both codes use the same numerical grid, which represents waste panels, panel closures, shaft seals, and surrounding geology.
- Sub-models include: creep closure, gas generation, pressure-induced fracturing, wicking, and the Klinkenberg effect.
- Important output variables include: pressure, brine saturation, porosity, and brine flow as a function of time.

The CRA BRAGFLO Grid

Main Driver for BRAGFLO Grid Changes

- Condition 1 of EPA's Final Rule:
 - Required DOE to implement the Option D panel closure system with Salado Mass Concrete
- A letter from EPA to DOE (Aug. 6, 2002):
 - Stated that the Option D design should be appropriately incorporated in the CRA PA calculations.
- Option D panel closure design is much less permeable than the generic panel closures modeled in the CCA.

Salado Flow Peer Review

- The Salado Flow Peer Review Panel met in April, 2002 and again in February, 2003 to review changes to three conceptual models in order that Option D panel closures could be included in the CRA (CRA Chap. 9, and Appendix PEER).
 - Disposal system geometry
 - Repository fluid flow
 - Disturbed rock zone
- After the first meeting, the panel requested that a full PA calculation be run.
 - Analyses were presented to the panel at the second meeting. These analyses tested various features of the new grid with the CCA inventory.

Salado Flow Peer Review

- In addition to implementing Option D panel closure design in the BRAGFLO grid, several other issues were also addressed during the Peer Review meetings:
 - Simplification of the shaft seal representation
 - Repository horizon change to Clay seam "G"
 - Grid refinements and modifications
 - Changes to Direct Brine Release calculations

Location of Panel Closures

Side View of Option D Panel Closure

Explosion Wall

Concrete Monolith

Option D Panel Closures

- Low permeability Option D panel closures can cause individual waste panels to be isolated from conditions in neighboring panels.
 - The pressure and saturation effects of a drilling intrusion will be localized to the intruded panel.

 High pressures can cause fracturing in surrounding anhydrite beds and flow around the panel closures can occur.

Option D Panel Closure Representation

CCA CRA

Effects of Option D on PA Results

- Option D Panel closures do affect pressures and saturations within in the repository¹.
 - Panel closures delay gas movement in repository and can result in larger pressure differences in different panels over time.
 - Panel closures prevent brine movement except when pressures cause fracturing. This causes brine saturations to be generally lower (drier) in most parts of the repository.
 - Total releases are not significantly affected².

² Dunagan, S. 2003. "Complementary Cumulative Distribution Functions (CCDF) for the Technical Baseline Migration (TBM) Rev 0." Carlsbad, NM: Sandia National Laboratories, ERMS# 525707.

¹ Hansen, C., Leigh, C., Lord, D., and Stein, J. 2002. "BRAGFLO Results for the Technical Baseline Migration."

[&]quot; Carlsbad, NM: Sandia National Laboratories. ERMS# 523209.

Simplified Shaft Model

³ James, S.J., and Stein, J. 2003. "Analysis Report for the Development of a Simplified Shaft Seal Model for the WIPP Performance Assessment Rev 1." Carlsbad, NM: Sandia National Laboratories. ERMS# 525203.

Clay Seam "G"

- Aug 6, 2002: EPA sends letter to DOE: "the [Clay 'G'] conceptual change should be appropriately addressed in the modeling, if warranted"
- DOE evaluated possible effects of the change to repository PA calculations⁴.
 - Porosity "surface"
 - Flow pathways
 - Pore volume
- DOE determined explicit inclusion of the horizon change in PA calculations was not warranted.

⁴ Stein, J., and Zelinski, W. 2003. "Analysis Report for: Testing of a Proposed BRAGFLO Grid to be used for the Compliance Recertification Application Performance Assessment Calculations." Carlsbad, NM: Sandia National Laboratories. ERMS# 526868.

Effects of Other Changes on PA Results

- CRA "simplified" shaft seal model requires far fewer parameters and essentially matches the performance of the CCA shaft seal model.
- Clay seam "G" change need not be included explicitly in PA modeling.
- Lateral grid refinement did reduce numerical dispersion in NUTS calculations.

Summary

- Salado Flow Peer Review accepted all changes to the three conceptual models.
- Implementation of Option D panel closures in the BRAGFLO grid represented the most significant change, but is not important to total releases.
- Other changes were made but did not result in significant changes to BRAGFLO results or to total releases.

